
Brevis: An Omnichain ZK Data Attestation Platform

Mo Dong, Qingkai Liang, Xiaozhou Li, Junda Liu

Celer Network

v1.0

Abstract.

Web2 applications often operate as walled gardens with limited data interoper-

ability, resulting in user lock-ins and fragmented identities. Web3 decentralized ap-

plications (dApps) built on blockchains have the potential to overcome these issues.

However, smart contracts, which are the core of dApps, currently lack a trust-free way

to access and utilize the vast amount of data stored in the full history of multiple

blockchains. To address this limitation, we propose Brevis, a ZK omnichain data

attestation platform that enables dApps to access, compute, and utilize

arbitrary data across multiple blockchains in a trust-free way.

Brevis’s architecture comprises three components: zkFabric, zkQueryNet, and zk-

AggregatorRollup. zkFabric collects block headers from all connected blockchains and

generates ZK Consensus Proofs that attest to the validity of these block headers.

This component is essential for dApps to trustlessly access block headers from various

blockchains. zkQueryNet is an open marketplace of ZK Query Engines that accepts

data queries from dApps, processes them using the attested block headers from zk-

Fabric, and generates ZK Query Proofs. These engines can range from highly special-

ized functions to generalized query languages, catering to a diverse set of application

requirements. zkAggregatorRollup is a ZK rollup blockchain that acts as the aggrega-

tion and storage layer for zkFabric and zkQueryNet. It verifies the proofs from both

components, stores the verified data, and commits its zk-attested state roots to all

connected blockchains, allowing dApps to access the attested query results directly

in their on-chain smart contract logic. This modular approach allows for flexibility in

query engines and reduces costs by minimizing communication overhead and enabling

cross-chain and cross-application query results sharing. Brevis has wide-ranging use

cases, including data-driven DeFi, zkBridge, novel user acquisition solutions, zkDID,

social account abstraction, and more.

In the initial Proof of Concept of Brevis, we built some of the fastest ZK light client

circuits as parts of zkFabric for Ethereum PoS, Cosmos and BNB Chain to enable

any EVM and non-EVM chains to access states of these three chains in a completely

trust-free way. Using these ZK light client circuits, we implemented a user-facing asset

zkBridge between Ethereum Goeril and BNB Chain to enable trust-free cross-chain

bridging.

Contents

1 Introduction 4

2 Background 8

2.1 Web 2.0: data in walled gardens . 8

2.2 Web 3.0: great promises, disappointing reality 9

2.3 Computation Migration Using Zero-Knowledge Succinct Proof 10

3 Overview of Brevis by An Example 11

4 Brevis zkFabric 13

4.1 Existing Interoperability Solutions . 13

4.2 zkFabric: Interoperability via ZKP-based Light Client 14

4.3 Example Light Client Implementations 16

4.3.1 Ethereum PoS . 16

4.3.2 Cosmos Tendermint . 18

4.3.3 BNB Chain . 19

5 Brevis zkQueryNet 20

5.1 Agent Smart Contract and Application Design Pattern 21

5.2 ZK Query Engine Network . 23

5.3 Keeper Network . 24

6 Brevis zkAggregatorRollup 25

6.1 System Overview . 26

6.1.1 System Components . 26

6.1.2 Data Store . 26

6.1.3 Interfaces with Other Modules 28

6.1.4 Rollup Fee Model . 28

6.1.5 Basic Workflow . 29

6.2 Rollup Sequencer . 29

6.2.1 Insert Block Headers . 30

6.2.2 Insert Query Results . 31

6.2.3 Fetch Attested Data . 31

6.3 Rollup Prover Network . 33

2

6.3.1 Single Rollup Block Proof . 34

6.3.2 Multi-Rollup-Block Aggregation Proof 35

7 Use Cases 35

7.1 ZK Multi-blockchain Interoperability 35

7.2 Data-driven DeFi . 36

7.3 User Acquisition with Trust-free Revenue Sharing 36

7.4 zkDID . 37

7.4.1 Prevent Sybil Attacks . 37

7.4.2 User Life Cycle Management 37

7.5 Account Abstraction . 39

8 Conclusion 39

3

1. Introduction

Web2 applications, despite being built on open protocols like TCP/IP, HTTP, and

HTML, often operate as walled gardens. User data is stored in centralized databases

controlled by the application providers, which limits the ability of users to control and

share their data across different applications and services. This leads to issues such as

financial and social data lock-ins, fragmented identities, and limited interoperability

and composability.

Web3 decentralized applications (dApps) have the potential to break these informa-

tion silos by being built on top of blockchains, which have append-only and publicly

accessible data storage. With the growing adoption of dApps and multi-blockchain ex-

pansion, L1 blockchains and L2 rollups have accumulated a wealth of raw data, such

as asset transfers, contract function calls, in-contract events, and blockchain state

roots, which makes it possible to extract valuable information such as ownership of as-

sets, user activity profiles, social graphs, financial connections, market pricing trends,

trading volumes and more. Intuitively, blockchains application should be able to easily

access and utilize these omnichain data insights in a completely trust-free way, because

after all, these dApps are “native residents” inside of blockchains.

However, in reality, Web3 dApps simply have no way to access the vast majority of

the data stored in the blockchains in a trust-free way. This is because smart contracts

deployed on a single blockchain can only access data: (1) via explicitly defined inter-

faces of other smart contracts; (2) on the same blockchain; (3) in the most current state

instead of with a complete historical view. Solutions based on off-chain Oracles [3] in-

troduce unnecessary external trust assumptions, and direct on-chain computation by

expanding state roots is prohibitively expensive. This issue is aggravated by the re-

cent explosive growth of the multi-blockchain ecosystem. Therefore, it is impossible

today to build a dApp whose internal business logic relies on information extracted

and computed from arbitrary data residing on a combination of blockchains.

To lift such limitations and further unleash the potential of Web3 applications, we

propose Brevis, a ZK omnichain data attestation platform that enables dApps to ac-

cess, compute and utilize arbitrary data across the full history of multiple blockchains

by leveraging the power of Zero-Knowledge (ZK) succinct proof.

As shown in Figure 1, Brevis’s architecture consists of three main components: zk-

Fabric, zkQueryNet, and zkAggregatorRollup. zkFabric collects block headers from all

4

Brevis

zkFabric

zkAggregatorRollup

zkQueryNet

Blockchains

Figure 1. Brevis High Level Architecture

connected blockchains and generates ZK Consensus Proofs that attest to the valid-

ity of these block headers. These block headers are further zk-verified and stored in

zkAggregatorRollup. zkQueryNet accepts data queries from dApps and generates ZK

Query Proofs based on the attested block headers stored in zkAggregatorRollup. These

query results are also zk-verified and stored in the zkAggregatorRollup. Essentially,

zkAggregatorRollup is a ZK rollup that acts as the aggregation and storage layer for

zkFabric and zkQueryNet. By committing its zk-attested state roots to all Brevis con-

nected blockchains, zkAggregatorRollup allows dApps to access attested query results

and utilize them directly in its on-chain smart contract logic in a trust-free way.

With this high-level overview, we now walk through each component.

First, to utilize arbitrary data across multiple blockchains, dApps need to have a

trust-free way to access block headers from blockchains other than its native chain.

This is because block headers contain state roots that can be used to access data

and states in blockchains. To fulfill this need, zkFabric is introduced to generate ZK

Consensus Proofs for block headers of all the supported chains. A Consensus Proof is

generated by a light client circuit proving that the block header in question is generated

according to the consensus rule of the corresponding blockchain. zkFabric itself is a

decentralized system consisting of a network of block header relayers and provers as

discussed in more detail in Section 4.

To actually extract valuable information from the zk-attested block headers, zk-

QueryNet is built as an open marketplace of ZK Query Engines that directly in-

terface with dApp developers and smart contracts. A dApp developer can choose a

ZK Query Engine that fits her need and write queries via high-level APIs in smart

contracts.

5

At run time, a smart contract can call the Agent Smart Contract of zkQueryNet

targeting a specific ZK Query Engine. This query will be picked up by the Provers

of this ZK Query Engine. Using the already zk-attested block headers provided by

zkFabric, the ZK Query Engine can then compute the query results and generate a

ZK Query Proof attesting that computation is done correctly.

Different ZK Query Engines can have very different APIs ranging from generalized

query languages to highly specific function calls with a fixed number of parameters. For

example, on one side of the spectrum, a specific ZK Query Engine may only expose

a function that accepts two block numbers and two chain IDs and will return the

Time Weighted Average Price for ETH/USDC pair during the specified time period

on Uniswap on the specified two blockchains. On the other side, a generalized ZK

Query Engine can present developers with a blockchain indexing abstraction using

high-level database queries such as SQL or GraphQL, which is very much like what

they can do in off-chain data solutions such as Dune Analytics [10] and Graph [11].

Brevis will provide a set of ZK Query Engines that address many immediate use

cases with reasonable flexibility and high performance. As zkQueryNet is an open

marketplace, we expect dApp developers and other third parties to provide other ZK

Query Engines to better serve a diverse ecosystem of applications.

Finally, zkAggregatorRollup is a ZK rollup blockchain powered by a lightweight

ZK virtual machine that aggregates different proofs and their inputs from zkQueryNet

and zkFabric. Specifically, zkAggregatorRollup VM runtime has the following func-

tionalities: (1) recursively verify proofs generated by zkQueryNet and zkFabric; (2)

store the zk-verified block headers from zkFabric; (3) store queries and the zk-verified

results. When plugging in a ZK Query Engine or adding a new type of consensus,

zkAggregatorRollup will be extended to support the verification of the corresponding

ZK proofs. Moreover, unlike many ZK rollup chains where the proofs of state root

progression are only committed to one single blockchain, zkAggregatorRollup’s state

root proofs are committed to all the blockchains supported by Brevis.

With zkAggregatorRollup’s state roots available on all connected chains, smart

contracts can access the query results and block headers via data inclusion proofs.

The primary benefit of using zkAggregatorRollup as an aggregation point is to reduce

the block header communication/verification overhead from O(N2) to O(N) (where

N is the number of blockchains supported by Brevis), and to share query results

6

on-demand efficiently across all connected blockchains.

To sum up, Brevis has the following key advantages.

• Trust-free: Brevis does not rely on any off-chain party to attest data and com-

putation integrity; instead, it relies solely on ZK succinct proofs. Therefore,

applications using Brevis do not need to post any additional trust assumptions

other than those of underlying blockchains and cryptographic protocols.

• Omnichain: Brevis integrates with multiple blockchains running on different

consensus and therefore enables an omnichain data access and computation.

• Modularized: Brevis uses a highly modularized design in its zkQueryNet and

therefore can cater to a wide range of application requirements through different

flavors and implementations of ZK Query Engine.

• Low-cost: Brevis’s zkAggregatorRollup essentially works as a batching and ag-

gregation layer for block headers and query results. Therefore, zkAggregator-

Rollup significantly reduces the on-chain costs by removing the otherwise N-to-

N communication overhead and by enabling cross-chain and cross-application

query results sharing.

It is important to note that the key difference between Brevis and off-chain data

indexing solutions such as Dune Analytics [10] and Graph [11] is that Brevis can

generate zk-attested query results that can be directly utilized by the business logic

of on-chain smart contracts in a trust-free way while off-chain solutions’ data results

can only be used in the web2-based data analytic context. Brevis has a wide range of

use cases such as data-driven DeFi, zkBridge, novel user acquisition solutions, zkDID,

social account abstraction, and many more.

In the initial Proof of Concept for Brevis, we built some of the fastest ZK light client

circuits as parts of zkFabric with gnark for Ethereum PoS, Cosmos, and BNB Chain

to enable any EVM and non-EVM chains to access the states of these three chains in

a completely trust-free way. Some of the key circuit performance benchmark numbers

are summarized in Table 1 (using a Linux Server with 20 cores@2.3GHz and 384GB

of memory without any GPU acceleration). Using these ZK light client circuits, we

implemented a user-facing asset zkBridge between Ethereum Goeril and BNB Chain.

In the rest of the white paper, we will discuss the background, motivation, and intu-

ition for Brevis in Section 2 and provide a system overview via an example in Section

3. Then we will dive into the design and implementation of zkFabric, zkQueryNet, and

7

#Constraints Prove+Witness Gen. Time
Batch of 8 Ed25519 Sig Verifications

(over BN254)
7.4m 15s

BLS12-381 Sig Verification
(over BN254)

8.7m 25s

SSZ Sync Committee Update 88m 72s

Table 1. Benchmark results for the key circuits used in the light clients of Ethereum PoS,
Cosmos Tendermint and BNB Chain. The circuit is implemented in gnark. The machine is a
Linux server with 384GB memory and 20 cores@2.3GHz.

zkAggregatorRollup in Sections 4, 5, and 6, respectively. Finally, we will discuss some

use cases in more detail in Section 7.

2. Background

2.1. Web 2.0: data in walled gardens

Web 2.0 applications have transformed the internet landscape, empowering users to

generate content and interact in ways previously unimagined. However, despite the

open and layered protocols underlying Web 2.0, many applications operate as walled

gardens where user data is stored in centralized databases owned and managed by the

platform providers. This presents a multitude of challenges for both developers and

users, such as limited data interoperability, fragmented identities, and financial and

social data lock-ins, leading to various consequences such as stunted innovation, vendor

lock-in, privacy concerns, limited transparency, and fragmented user experiences.

Take an example of financial data lock-ins, where users are unable to transfer their

financial data to other services or platforms. A user may have their credit card in-

formation stored on an e-commerce platform but be unable to transfer this data to

another platform, such as a budgeting app. This creates a barrier to entry for new

applications and services, as users may be hesitant to switch to a new platform if it

means losing access to their financial data.

This lack of data interoperability does not only exist in financial applications. For

example, a user may have a wealth of data about their workouts, such as their heart

rate, distance run, and calories burned. However, this data is often siloed within the

fitness app and not easily accessible to other applications or services. This limits the

potential uses of the data, such as sharing it with a nutrition app to get personalized

recommendations for meals based on the user’s workout history.

8

2.2. Web 3.0: great promises, disappointing reality

Web 3.0 holds great promise to break down the barriers of data isolation, as decen-

tralized applications (dApps) are built on top of public blockchains. Unlike Web 2.0

databases, blockchains, which can be seen as append-only data structures, store all

past transactions and historical states in the public domain.

One might argue that Web 2.0 databases can also store historical data, but it

is critical to note that this historical data is stored via explicit business logic built

into the application itself. If there is no such business logic, historical user actions

will be forever lost. In contrast, for dApps built on blockchains, every transaction

is permanently stored in the blockchain, regardless of whether the app itself has the

business logic to record that history. Moreover, as blockchains progress, state snapshots

of each block are contained in the block header in succinct digest forms such as Merkle

Roots.

Many products and projects are already leveraging this unique property. Products

like Dune Analytics [10] and Graph [11] provide off-chain data indexing or data ana-

lytics for blockchain applications across time. They can also be used to provide stateful

data, such as user transaction history, for dApps’ frontend UIs. These applications ac-

cess blockchain data in an off-chain way, recording, indexing, and computing data

via blockchain nodes’ RPC endpoints.

With full blockchain data access being this simple for off-chain programs, one

would assume that smart contracts, which are on-chain programs acting as the core

component of decentralized dApps, should also be able to easily access this complete

set of blockchain data. After all, smart contracts are “native residents” of blockchains.

However, this is not the case.

The scope of a smart contract’s data access is highly limited and, in fact,

resembles the pattern of Web 2.0 applications today. To understand this coun-

terintuitive fact, we need to discuss the important concept of virtual machine runtime

and smart contract life cycle. When a smart contract is deployed on a blockchain,

its life cycle starts in the context of the virtual machine runtime. The virtual ma-

chine’s system clock moves forward monotonically as new blocks are built. Therefore,

the smart contracts running in this virtual machine will only have visibility of

blockchain states in the present time. Additionally, an on-chain smart contract

can only access data that is either internal or explicitly defined as a function

9

call in another smart contract. Finally, because a blockchain VM can only access

states and execute programs within the same blockchain, smart contracts have no way

to access or utilize data from any other blockchains in a trust-free way.

To make a Sci-Fi analogy, we can think of on-chain smart contracts as three-

dimensional beings, such as humans living on Earth. A human always lives in the

present time and cannot travel back in the past. Furthermore, a person cannot get

information about another person without having the other person agree to share the

information. Finally, a person cannot see the events happening in another parallel

universe. Comparatively, off-chain programs are like higher-dimensional beings that

have visibility back to the past, into every fact, and to other alternative universes.

However, they are separated from the on-chain world and can not drive the core logic

of dApps today.

One might argue that there are several possible paths to solve these challenges.

For the same blockchain, it is theoretically possible for a smart contract to parse data

query semantics, access state roots directly, and compute the necessary query results by

expanding the state tree on-chain. However, in practice, this is prohibitively expensive

due to the extremely high on-chain computation costs. Similarly, it is theoretically

possible to build a trust-free light client that validates if block headers from a different

blockchain are generated via the proper consensus rules. However, in practice, this is

impossible due to the same cost concerns.

So, how can we allow smart contracts to access and compute data from

any blockchains over an arbitrary period of time?

2.3. Computation Migration Using Zero-Knowledge Succinct Proof

Zero-knowledge succinct proof technology (ZKP) is a rapidly evolving area of cryp-

tography research with the potential to revolutionize our interactions with digital

information. With ZKP, one party can prove to another party that they have cor-

rectly generated a computation result based on an input value, without revealing any

information about that value. Moreover, the other party only needs to run a computa-

tionally inexpensive program, called a verifier, to be convinced that the computation

is done correctly.

Apart from the privacy benefits implied in the “zero knowledge” part of ZKP, this

technology can also be used to migrate computation from a high unit cost

10

location to a low unit cost location.

The idea is that zero-knowledge succinct proofs allow the prover to perform a com-

putationally expensive operation not only to complete the computation but also to

generate a cryptographic proof, while the verifier can perform a computationally cheap

operation to verify the proof. This effectively enables the location of computation to be

shifted from the verifier to the prover. Although the total computation cost increases

when using ZKP due to the added proof generation computation, the tradeoff is still

worthwhile if the prover’s unit computational costs are sufficiently lower than those of

the verifier.

ZKP’s computation migration property is the driving force behind many ZK rollups

(e.g., [7, 19, 22, 23, 30]). In this paper, we leverage this property to design Brevis, which

enables access and computation of arbitrary blockchain data across the entire history.

3. Overview of Brevis by An Example

Before we delve into the details of each component, we present a concrete application

example to provide an overview of Brevis. Note that this overview abstracts some key

details for simplicity and leaves a more detailed design in the following sections.

Application’s Blockchain

zkAggregatorRollup

DEX

State Root

Agent1

6

7

zkQueryNet

zkFabric

Query Result

Store zk Verifier

Block Header

Store

4

2

3

45

Figure 2. An Example Walk Through

Multi-blockchain decentralized exchanges (DEXes), such as PancakeSwap, often

need to dynamically adjust farming rewards for incentivized pools based on trad-

ing pair quality scores such as average daily volume, 14-day volume, price volatility,

11

number of active traders, and liquidity providers across all supported blockchains.

Currently, such adjustments must be made through governance proposals, which

entail significant human overhead and can only be done when the setting deviates

severely from optimal. This lag behind market trends often leads to a decline in user

engagement, revenue loss, and waste of treasury funds due to sub-optimal reward

configurations.

Brevis can address these challenges by enabling DEXes to adjust the liquidity farm-

ing schedule programmatically and trust-freely based on omnichain market trends. For

simplicity, let us assume that volume is all we care about. Let us also assume that

there is a ZK Query Engine Q in zkQueryNet that provides a set of highly optimized

circuits for DEX volume data with an API that looks like the following:

uint_64 get_trading_volume(uint_64 chain_id,

uint_64 start_block,

uint_64 end_block,

address pair)

Figure 2 shows the step-by-step process of how this use case works. To use this

data compute API, DEX smart contract first needs to make a function call to the

Agent Smart Contract (denoted as A) of zkQueryNet with the above query parameters

specified. Note that this function is asynchronous and only immediately returns a

query id so the DEX’s smart contract needs to remember this ID and has a handler

to process the return value later.

This function call is then picked up by Q’s prover, denoted by Pq. Using the block

headers for chain id (which has already been verified and stored in zkAggregator-

Rollup), Pq will generate a ZK proof π proving that on chain id during the time

period from start block to end block the DEX’s trading pair indeed has volume.

Q’s proof verifier in zkAggregatorRollup verifies π, and the result volume, as well

as the corresponding query parameters, are stored in zkAggregatorRollup. This state

is later included in a state root S of zkAggregatorRollup and committed to the chain

on which the DEX is deployed.

Now, A can retrieve and verify the query result by using a state inclusion proof

against S. This retrieved query result will then be returned back to the DEX’s smart

contract’s handler function. The handler function will be able to match the stored

12

query id with the returned query result and adjust the liquidity farming schedule

based on the volume data accordingly.

With this example as a high-level walkthrough, we will now dive into the detailed

design of each component in the following sections.

4. Brevis zkFabric

In Brevis, zkFabric serves as the trust-free interoperability layer that enables any

blockchain to access attested states of every other blockchain. zkFabric’s zero-

knowledge proof (ZKP) based light clients makes it fully trust-free without

relying on any external validation entity, because its security is solely derived from

the underlying blockchains and mathematically sound proofs.

In the following sections, we will briefly survey existing interoperability solutions and

their limitations in Section 4.1, provide an overview of the architecture and technology

used in zkFabric in Section 4.2, and discuss implementation details of building zkFabric

in Section 4.3 with a few consensus protocols as examples.

4.1. Existing Interoperability Solutions

Blockchain interoperability has emerged as a prominent area of research in recent

years, leading to the development of several classes of architectures in production. In

this section, we briefly discuss various multi-blockchain interoperability solutions and

their limitations. Please note that the list in each class is not meant to be exhaustive.

• External Validation Bridge achieves interoperability among blockchains by

using an external entity sitting in between different blockchains. This external

entity undertakes the role of validating and relaying messages from one chain to

another. Therefore, the security of cross-chain communications solely depends on

the external entity’s designs, such as multi-signature validation (e.g., Wormhole

[28], Ronin Bridge [21]), multi-party computation threshold signature (e.g., Mul-

tichain [15], Thorchain [26]), relay and oracle co-validation (e.g., LayerZero [lay-

erzero]), and Proof-of-Stake (PoS) based middle chains (e.g., Axelar [1], Celer’s

default security model [2]). External validation bridges are often decentralized

but not trust-free because the external entity can still modify the cross-chain

13

messages when acting maliciously.

• Optimistic-like Bridge is a variation of the external validation model’s de-

sign by incorporating a two-phase commit with a delay and optionally source-

chain slashing functionality (e.g. Nomad [17] and Celer’s optimistic model [2]).

Specifically, an optimistic bridge system requires the external validation layer

to deposit collateral and relies on a watchdog service to continuously monitor

the bridge state and penalize malicious actors by slashing their collateral upon

detection. However, an optimistic bridge introduces a considerable delay due to

the challenging period between commitment and confirmation. Moreover, its se-

curity still depends on the deposited collateral: if the value in transit exceeds

the collateral, there are still incentives for the external validation layer to cheat.

Note that Optimistic-like bridges are very different from Rollup bridges, because

malicious messages can still be delivered even if a challenge is successful.

• Light-Client Bridge implements the entire light client logic in a smart contract

on the destination chain for the source chain. Compared to the aforementioned

models, the light-bridge bridge model eliminates the need for a trusted third

party and is trust-free. Examples include Cosmos IBC [9] and NEAR-Ethereum

Rainbow bridge [16]. However, directly implementing generalized light clients

as a smart contract is prohibitively expensive. For example, verifying NEAR

light client involves many Ed25519 signature verifications but a single Ed25519

signature would require 500k gas to verify in EVM. Thus, light-client bridges

such as NEAR-Ethereum Rainbow bridge use an optimistic model that skips the

Ed25519 signature verification and relies on a watchdog to monitor (similar to

the previously-mentioned Optimistic bridge), resulting long delay (4 hours) and

a weakened security model.

4.2. zkFabric: Interoperability via ZKP-based Light Client

zkFabric achieves trust-free interoperability, the same as the light-client bridge model,

and overcomes its implementation challenges and long delay issues by implementing

light-client protocols in polynomial arithmetic circuits. Using these circuits, zkFabric

can generate ZK Consensus Proofs which prove block headers are indeed generated

through the corresponding chains consensus protocols. These Consensus Proofs can

then be verified efficiently and recursively through zkAggregatorRollup, on all con-

14

nected blockchains.

Figure 3 shows the architecture of zkFabric which consists of two components:

• Block Header Relay Network: This network synchronizes block headers from

various blockchains, forwarding them to the zkFabric prover network to generate

validity proofs. Subsequently, it submits the block headers and associated proofs

to zkAggregatorRollup (refer to Section 6 for further details on zkAggregator-

Rollup).

• zkFabric Prover Network implements circuits for each blockchain’s light-

client protocol, this network generates validity proofs for block headers. Provers

can leverage accelerators, such as GPUs, FPGAs, and ASICs, to minimize prov-

ing time and cost.

Block Header Relay Network

send block headers submit block headers

and proofgenerate validity proof

sync block headers

Blockchains

......

zkFabric Prover Network

Prover 1

Ethereum Light Client Circuit

SSZ Sync

Committee update

BLS Signature

Verification

Cosmos Light Client Circuit

Ed25519 signature verification

......

Prover 2

......

zkAggregateRollup

Figure 3. Brevis zkFabric Architecture

The zkFabric workflow comprises the following steps:

(1) The block header relayer network periodically synchronizes block headers from

various blockchains. To avoid fork choices, the network only selects a block header

after a safe block confirmation delay has passed. Additionally, external triggers

(e.g., on-chain events or user requests) can initiate block header synchronization.

(2) The block header relayer network submits block headers to the zkFabric prover

network.

(3) The prover network generates a validity proof π for the block headers, utilizing

15

a chain-specific ZKP circuit that implements the light-client protocol. Section

4.3 will provide some example implementations.

(4) The prover network returns the validity proof π to the relayer network.

(5) Upon receiving the proof, the relayer network sends it and the corresponding

block headers to zkAggregatorRollup using the InsertBlockHeaders interface.

Section 6 will specify details about this interface.

Trust Assumption. zkFabric relies on the security assumptions of blockchains and

underlying cryptographic protocols, without requiring additional assumptions on any

external parties. However, ensuring zkFabric’s liveness necessitates at least one honest

relayer to synchronize the correct fork. Therefore, we propose employing a decentral-

ized relayer network, rather than a single relayer, to optimize zkFabric’s liveness. This

relayer network can utilize existing constructs such as the State Guardian Network in

Celer Network. However, it is critical to note that in this case, the State Guardian

Network has no way to generate malicious cross-chain messages.

Prover Assignment. The prover network, a decentralized network of ZKP provers,

requires the selection of a prover for each proof generation task and the payments to

these provers. This is out of the scope of this paper and separate economics specifica-

tions will be published on this and other related subjects in the future.

4.3. Example Light Client Implementations

In this subsection, we outline our current implementations of light client protocols for

various blockchains, including Ethereum PoS, Cosmos Tendermint, and BNB Chain,

as examples and proof of concepts.

4.3.1. Ethereum PoS

Circuit. The ZK circuit for the Ethereum PoS light client primarily comprises two

components:

• SSZ Sync Committee Commitment. This circuit computes the SSZ commitment

for the 512 validators in the sync committee, requiring 1025 SHA-256 compu-

tations over a 64-byte public key. It is worth noting that SHA-256 is not ZK-

friendly due to bitwise operations, leading to a large number of constraints in

our implementation. Fortunately, since the Ethereum sync committee updates

16

#Constraints Prove+Witness Gen. Time
BLS12-381 Sig Verification

(over BN254)
8.7m 25s

SSZ Sync Committee Update 88m 72s

Table 2. Benchmark results for Ethereum PoS Light-client Circuit implementation in gnark.
The machine is a Linux server with 384GB memory and 20 cores@2.3GHz.

every 27 hours, this circuit is invoked only occasionally. However, the per-block

aggregate BLS signature verification, which also necessitates calculating the sync

committee commitment, is impractical at such a large number of constraints for

a per-block frequency. To address this issue, we employ a technique by Succinct

Labs [24], allowing the circuit to compute two commitments: one using the orig-

inal SHA-256 hash function and the other utilizing a ZK-friendly hash function,

such as Poseidon or Rescue hash. An on-chain mapping from the original SSZ

commitment to the new ZK-friendly commitment is then stored for later use in

per-block BLS signature verification.

• BLS Signature Verification. This circuit first calculates the ZK-friendly com-

mitment and compares it to the on-chain commitment mapping. Subsequently,

it verifies the BLS12-381 signature, involving hash-to-curve calculations and

BLS12-381 pairing over the BN254 scalar field (since the initial implementa-

tion requires light client verification in EVM, where BN254 pairing is supported

as a pre-compile).

We implement the circuits in gnark [6] with Groth16 instantiated with BN254. The

gnark framework has proven to be highly optimized in performance, as demonstrated

in industrial benchmarks [32]. Furthermore, gnark provides an efficient imple-

mentation for range checks which we leverage to significantly reduce the

number of constraints in non-native field operations for BLS signature ver-

ification. A similar optimization for the bitwise operations in SSZ Sync Committee

Commitment circuit is in progress.

Table 2 presents the benchmark results for the aforementioned circuits on a Linux

server with 384GB memory and 20 cores@2.3GHz.

Light Client. Our system utilizes the latest beacon chain light client APIs, which

provide both sync committee updates and finalized blocks. Proofs are submitted to on-

chain light client contracts for sync committee and block signature verification. Sync

17

#Constraints Prove+Witness Gen. Time
Batch of 8 Ed25519 Sig Verifications

(Over BN254)
7.4m 15s

Table 3. Benchmark results for verifying a batch of 8 Ed25519 signatures (over BN254 scalar
field) implementation in gnark. The machine is a Linux server with 384GB memory and 20
cores@2.3GHz.

committee updates must be submitted every 27 hours to establish a chain of trust.

Blocks, on the other hand, can be updated on-demand as long as they are finalized

by the current committee. To support use cases like generic message passing, we also

generate a Merkle proof for the execution state root in the beacon state and submit

it to the light client to persist the latest execution state root on-chain. Consequently,

other applications can easily call the Ethereum API eth getProof to obtain Merkle

proofs for any state of interest, and the on-chain contract ensures that the state root

matches the persisted root.

4.3.2. Cosmos Tendermint

Ed25519 Signature Verification Circuit. One of the most computationally expen-

sive aspects of Cosmos Tendermint consensus is the verification of a batch of Ed25519

signatures (for example, in Ethereum, verifying a single Ed25519 signature on-chain

costs approximately 500k gas). To leverage the computation migration property of

ZKP, we incorporate the Ed25519 signature verification into a ZK circuit.

However, Ed25519 signature verification necessitates elliptic curve operations on

Curve25519, whose scalar field is larger than BN254. As a result, the Ed25519 signa-

ture verification circuit requires non-native field arithmetic operations (it is theoret-

ically impossible to avoid such non-native arithmetic operations if we need to verify

Ed25519 signatures in EVM [33]). We implement the Ed25519 signature verification

(over BN254 scalar field) circuit in gnark, where each Curve25519 element is divided

into four limbs with 64 bits each. Additionally, we employ the efficient range check

gadgets in gnark to significantly reduce the number of constraints in non-native field

operations. Table 3 displays the benchmark results for our implementation on a Linux

server with 384GB memory and 20 cores@2.3GHz. We anticipate further improve-

ments in proving time for a batch of signatures through parallelization and hardware

acceleration.

Light Client. We have integrated the Ed25519 verification circuit into an on-chain

18

Tendermint light client contract based on Tendermint-sol [25]. The light client first

verifies a protobuf-serialized Tendermint block header by performing basic checks that

are not particularly computationally intensive. It then delegates the validation of val-

idator signatures to the Ed25519 verification contract. In our current simplified im-

plementation, the circuit validates signatures from 2/3 of the validators in a single

proof with a constant estimated proof verification cost of 300k gas. This cost saving

is significant compared to the estimated 500k gas per signature if we were to use an

Ed25519 implementation in EVM, where validating 10 signatures would have cost 5M

gas instead.

Once a Tendermint block header is verified, the light client stores the Merkle root

of the Tendermint state tree (referred to as appHash in Tendermint terms), which can

then be used to verify transactions using the Merkle proof verification spec standard-

ized by ICS-23 [13]. A particularly useful application of ICS-23 is verifying Cosmos

IBC transactions in a trust-minimized manner. We will follow up with an example of

the BNB chain.

4.3.3. BNB Chain

Tendermint and PoA Light Client for BNB Chain. The BNB chain adopts

a two-layer architecture, comprising the base layer, referred to as the BNB Beacon

Chain (BBC), and the execution layer, called the BNB Smart Chain (BSC). The BBC

utilizes Tendermint consensus, while the BSC employs a Proof-of-Authority (PoA)

consensus called Parlia, which is largely based on Clique [5]. Parlia features a set of

authorized validators that produce BSC blocks in a round-robin fashion. Each BSC

block is signed off by one of the validators in the set. As a specialized Tendermint

application, the BBC manages the election and updates of the BSC validator set.

Every 24 hours, a new set of BSC validators is elected and synchronized to the BSC

via an IBC-like cross-chain mechanism that predates the official IBC specification.

The BSC then verifies the validator set update via its own Tendermint light client,

which is a system-level precompile contract implemented in Go, rendering gas costs

inconsequential.

To verify a transaction on BSC on another EVM-based chain, one must implement

an on-chain Proof-of-Authority light client. Since each PoA header is signed via a single

secp256k1 key for which the EVM has a precompile, verifying a PoA header is not gas-

19

intensive. However, as PoA is not Byzantine fault-tolerant on its own, we took an extra

step to verify the validity of the PoA validator set using our Tendermint light client,

assisted by zk-based Ed25519 verification. The BBC Tendermint header containing

the “BSC validator set update” IBC package is synchronized to the Tendermint light

client contract and verified, with the updated BSC validator set stored on-chain in

the PoA light client. Subsequently, each BSC block header can be verified trivially by

checking that it was signed by one of the validators.

5. Brevis zkQueryNet

Brevis zkQueryNet offers a comprehensive network of Zero-Knowledge Query Engines

(ZQEs) that can be directly integrated into smart contracts. For application develop-

ers, zkQueryNet provides a standardized and user-friendly Agent Smart Contract API

and an actor-based design pattern, enabling them to build decentralized applications

(dApps) that rely on arbitrary data query computation results from any combina-

tion of blockchains. For ZQE providers, zkQueryNet offers a unified Keeper service

and interfaces for their Provers and Query Services to be seamlessly integrated into

Brevis.

ZK Query Net

ZK Query Engine

ZK Query Engine

ZK Query Engine

Query Service Query Prover

zkAggregator Rollup

Application’s Blockchain

6

2

3

3

5

KeeperAgent

Smart ContractAPP

Storage Root

1

7

48

Figure 4. A Walk Through of zkQueryNet

As illustrated in Figure 4, we provide a step-by-step walkthrough of how a smart

contract interacts with zkQueryNet:

(1) When a smart contract needs to obtain certain data, it issues a query by calling

a zkQueryNet’s Agent smart contract using a standard interface.

(2) This query is picked up by zkQueryNet Keeper, which routes the query to the

corresponding ZQE.

(3) Upon receiving the query, the ZQE’s Query Service parses the query and gen-

20

erates the data computation results. Next, the ZQE’s Query Prover generates a

proof based on the query input, relevant block headers, and results.

(4) The Query Prover then posts the query results, along with proofs, to zkAg-

gregatorRollup by calling the InsertQueryResults interface. Once verified, the

query and the results are stored in zkAggregatorRollup. The details about the

InsertQueryResults interface will be specified in Section 6.

(5) After the zkAggregatorRollup’s block containing the verified query is committed

to the application’s local blockchain, the Keeper calls the FetchAttestedData

interface to zkAggregatorRollup and obtains an inclusion proof for the query

result, which can be verified by the Agent Smart Contract.

(6) The Agent Smart Contract then calls the handler function of the application to

deliver the query results.

(7) The application smart contract executes the corresponding business logic based

on the returned data.

5.1. Agent Smart Contract and Application Design Pattern

A shared Agent Smart Contract is deployed on each blockchain to act as an interface

between the applications’ smart contracts and other components of the zkQueryNet

system. The Agent Smart Contract is shared among all ZQEs and provides the fol-

lowing interfaces:

uint256 query(uint256 engine_id ,

uint256 deadline ,

bool cache_result ,

bytes [] query_input);

bool deliverResult(uint256 query_id ,

bytes [] query_result ,

bytes [] proof);

bool registerEngine(uint256 engine_id);

bool removeEngine(uint256 engine_id);

The query function serves as the entry point of Brevis. Any smart contract that

wants to utilize the data query and computation capabilities of Brevis must first call

query. In the function call, a smart contract must specify the ZQE it intends to use via

21

engine id. Additionally, a deadline must be specified to inform other components of

zkQueryNet about the optimal scheduling and to prevent stale data from being used.

If the query result needs to be reused by other smart contracts on the same chain,

cache result should be set as true. Finally, query input is the serialized Query API

call based on the chosen ZQE. This function will first emit an event containing all the

aforementioned parameters.

As a query often involves data access, computation, and ZK proof generation pro-

cesses from the ZQE, it is unreasonable to expect the query function to return results

immediately. Instead, the function returns a unique query id deterministically gen-

erated based on the query function’s calldata. Consequently, application developers

must employ an asynchronous design pattern when interacting with the Agent Smart

Contract, recording the query id and any metadata in the application smart contracts.

On the application side, a handler function with the following signature is required to

handle the returned query results later:

bool handleQueryResult(uint256 query_id ,

byte[] query_result)

When the query result is zk-verified and stored in zkAggregatorRollup, and the

corresponding rollup block is committed to the application’s blockchain, the Keeper

will call the FetchAttestedData interface to zkAggregatorRollup using query id and

obtain the query result as well as its proof, which can attest to the inclusion of

the query result in the committed rollup Verkle tree. The Keeper will then call the

deliverResult function, which first checks if the deadline has passed. If not, the

function further validates the inclusion of the query result using the proof.

After the validation is completed within deliverResult, handleQueryResult is

called with the query id and query result. This handler function is expected to be

part of the asynchronous query flow, matching the result with the pending query and

executing the corresponding business logic.

With the Agent Smart Contract concealing all the common “logistics”, developers

are provided with a clean and user-friendly interface to integrate their dApps with

Brevis. It should be noted that the current version of the Brevis whitepaper does not

cover economics and incentive mechanisms. Once a complete economics mechanism

is in place, we expect the Agent Smart Contract’s interface to be expanded with the

functionality to commit to pricing and deadlines, along with a staking and slashing

22

mechanism for addressing missed Service Level Agreements. We will cover the eco-

nomic incentive mechanisms in a different paper.

5.2. ZK Query Engine Network

The ZK Query Engine Network forms the core of the zkQueryNet system, where

queries are transformed into zk-attested results. Anticipating a diverse range of future

use cases for Brevis, we have designed the ZK Query Engine Network as an open

marketplace, allowing any ZK Query Engine to be easily integrated. A ZK Query

Engine in Brevis comprises two parts: Query Service and Query Prover.

Query Service is responsible for defining Query APIs and generating the query

results. In terms of query results generation, it operates similarly to off-chain data

analytic platforms, where data is gathered via off-chain blockchain RPCs or from

other data platforms. Query APIs are the distinguishing factors for different ZQEs

at the application usage level. The design of Query APIs spans a wide spectrum,

ranging from highly specific to highly generalized. Below, we provide some illustrative

examples:

• Highly specific: uint256 get retention uniswap(uint256 start, uint256

end) retrieves the 7-day retention of active users on Uniswap for a cohort be-

tween block number start and end.

• More general: uint256 get active traders by filter(string dex name,

uint256 start, uint256 end, byte[] filter) returns the Verkle root of all

users from the DEX with dex name, between block number start and end,

matching a specific filter with simple syntax.

• Highly generalized: it is also possible to present a generalized indexing abstrac-

tion akin to relational databases or graph databases and use standard query

languages such as SQL or GraphQL to obtain the requested data.

Although highly generalized Query APIs are possible, we envision that most pro-

duction APIs will lean toward the more specific end of the spectrum. This is because

there is a trade-off between the level of generalization and the performance of Query

Provers. Consequently, high-frequency use cases will naturally favor highly specific de-

signs to reduce access costs. Nevertheless, some generic solutions will be available for

less-frequent use cases or those requiring a high degree of flexibility. For each ZQE, an

23

on-chain serializer smart contract should be available to generate the serialized Query

API call for the query function in the Agent Smart Contract.

Once the Query Service generates a result for the query, the Query Prover cre-

ates a ZK proof attesting that the API call parameters, combined with all relevant

block headers already attested by zkFabric, indeed produce the query result. This is

where the majority of the work occurs. Different ZQEs will implement their own query

stack in a ZK-verifiable manner, utilizing low-level circuit frameworks like Circom [4],

Halo2 [12], or gnark [6], or high-level VM/compiler frameworks such as RISC0 [20],

zkWASM [31], and zkLLVM [29].

Following proof generation, the Query Prover will submit query and query result

along with the proof to zkAggregatorRollup by calling the InsertQueryResults in-

terface (refer to Section 6 for details about this interface). Upon successful verification,

query and query result will be stored in zkAggregatorRollup’s query result store.

At this stage, the zk-attested query result is integrated into the on-chain world. Please

refer to Section 6 for details on how applications can access these query results from

zkAggregatorRollup’s state roots.

5.3. Keeper Network

The Keeper Network is a trust-free component in zkQueryNet that connects ZQEs

to the rest of the system. First, it is utilized to relay query events emitted from the

Agent Smart Contract to the Query Service and Query Prover. Once the query result

is verified and stored in zkAggregatorRollup, it retrieves the query results and their

inclusion proof from the rollup and delivers them back to the application through the

Agent Smart Contract.

It is crucial to emphasize that the Keeper and other off-chain components

in zkQueryNet do not introduce any trust assumptions into Brevis. This is

because they are either used to generate ZK proofs that are verifiable on a chain

or simply act as message relayers that cannot alter the content of the message. A

query made by a dApp solely relies on the security of the blockchains that the query

referred to. With the Keeper Network being permissionless and trust-free, it is possible

to implement customized Keepers to obtain query results directly and implement

customized callbacks to smart contracts.

24

6. Brevis zkAggregatorRollup

On top of zkFabric and zkQueryNet, we introduce zkAggregatorRollup, an aggregation

layer that verifies and stores the block headers from zkFabric and the query results

from zkQueryNet. In other words, it serves as a “rollup” of information from zkFabric

and zkQueryNet, and commits (compressed) information to different blockchains that

Brevis connects to. Additionally, it acts as a store for attested block headers and query

results. We denote Brevis supported and connected blockchains collectively as Base

Chains in this white paper.

More specifically, zkAggregatorRollup fulfills the following functionalities:

(1) Verify the validity of the block headers generated from zkFabric and the query

results generated from zkQueryNet by checking their validity proofs.

(2) Store the verified block headers and query results in a data structure, which can

be later retrieved and verified from any Base Chain the rollup is connected to.

(3) Commit the rollup state root to Base Chains and prove the validity of the root

update by generating aggregate proofs for computations performed in steps 1

and 2.

Although it is possible to achieve the above functionalities by making zkAggrega-

torRollup a Turing-complete virtual machine, we opt to implement the rollup as a

lightweight state machine that (1) maintains a storage/state commitment data struc-

ture, and (2) recursively verifies ZKP from zkFabric and zkQueryNet.

Moreover, it is worth discussing the necessity of introducing this aggregation layer

(instead of verifying, committing, and storing the block headers and the query results

directly on each connected blockchain). The primary benefit offered by zkAggrega-

torRollup is the significant reduction in on-chain verification costs, in the following

aspects:

• Without this aggregation layer, each chain would need to store the block headers

for every other chain, resulting in O(N2) “connections” for N blockchains. By

introducing zkAggregatorRollup, each blockchain only needs to store the state

root for the rollup, reducing the overall connections to O(N).

• The zkAggregatorRollup aggregates multiple proofs for block headers/query re-

sults and submits a single proof for verification on each connected blockchain.

Consequently, the on-chain verification costs for block headers and query results

25

are efficiently amortized.

In the remainder of this section, we present the system design for zkAggregator-

Rollup and outline several challenges encountered while constructing the rollup.

6.1. System Overview

6.1.1. System Components

The current architecture of zkAggregatorRollup comprises four system components

(see Figure 5):

• Rollup Sequencer receives block headers from zkFabric and query results from

zkQueryNet, verifies their validity, inserts block headers and query results into

storage, and commits them to each Base Chain.

• Rollup Prover Network generates validity proofs to demonstrate that the

block headers and query results are verified and that the rollup storage is accu-

rately updated.

• Base Chain Rollup Contract, deployed on all Base Chains, verifies the va-

lidity proofs of each rollup block, and stores the corresponding state roots.

• Data Availability Layer provides data availability for zkAggregatorRollup.

The DA layer can leverage existing solutions such as Celestia and Eigenlayer.

It is important to note that Brevis zkAggregatorRollup differs from traditional L2

rollup chains in that zkAggregatorRollup commits to multiple Base Chains, making it

an “omnichain” rollup. The reason that zkAggregatorRollup can perform this multi-

blockchain commitment is that, unlike commonly referred L2 rollups, zkAggregator-

Rollup does not involve BaseChain → Rollup deposits nor Rollup → BaseChain

withdrawals and is a “rollup-transaction-only” rollup, where the “rollup transactions”

are state tree updates and recursive proof verification for block headers and query

results.

6.1.2. Data Store

As mentioned above, zkAggregatorRollup maintains data stores for attested block

headers (called “block header store”) and query results (called “query result

store”). In our case, the data is immutable after being attested and inserted, so each

26

zkFabric

generate

single-block proof

insert_block_headers

commit state roots and prove

insert_query_results

fetch_attested_data

return data and inclusion proof

dispatch proof

aggregation job

generate multi-block

aggregate proof

Rollup Sequencer

Block header store Query results store zk verifier

Ethereum

rollup

contract

BNB Chain

rollup

contract

Aptos

rollup

contract

......DA layer

Verkle tree update

block header validity proofs

query results validity proofs

zkAggregateRollup Prover Network
......

Prover 2

Prover 1

Verkle Tree Circuit Aggregation Circuit Recursive Proof

Verification Circuit

zkQueryNet

Figure 5. Brevis zkAggregatorRollup Architecture

data store is an append-only key-value store with a state commitment scheme that

allows for efficient data inclusion proof in Base Chain smart contracts. Additionally, it

is often the case that a batch of block headers (or query results) needs to be inserted,

fetched, or verified, so the data store should also support efficient batch insertions,

range queries, and inclusion proofs for a batch of data. Finally, key-value insertion

and state update in the data store should be zk-friendly so that they can be proved

in a ZK circuit.

While there are many choices for the data store (e.g., Merkle Patricia Tree [14],

Sparse Merkle Tree [38], IAVL+[8]), we use the Verkle Tree[27] to store attested block

headers and query results. The Verkle tree combines polynomial commitment with the

Merkle tree, making wider branching factors more efficient and reducing tree depth.

As a result, it significantly reduces the data inclusion proof size, especially when the

tree contains a large number of elements. Moreover, the Verkle tree also supports

efficient inclusion proof for a batch of data: by employing random linear combinations

of polynomials, a batch of data inclusion can be proved with a single polynomial

opening proof.

In zkAggregatorRollup, there are two Verkle trees: Tb for storage of block headers

and Tq for storage of query results. For the block header Verkle tree Tb, the key is the

“(chain ID, block number)” pair, enabling efficient range queries (e.g., retrieve headers

27

of block 1234 to block 1256 of chain ID 1) using the prefix. For the query results Verkle

tree Tq, the key is the query ID.

Data Availability. Various ways can be used to provide data availability. For exam-

ple, we can use any existing DA layer solutions (e.g., Celestia, Eigenlayer) or run a full

node for zkAggregatorRollup to access the data. There is no trust assumption about

the data availability provider since data validity will be verified via inclusion proof on

Base Chains.

For brevity, this paper does not delve into the detailed data structure of Verkle trees

nor discuss the data serialization scheme.

6.1.3. Interfaces with Other Modules

zkAggregatorRollup interacts with zkFabric and zkQueryNet in the following ways:

• InsertBlockHeaders (zkFabric → zkAggregatorRollup): zkFabric may in-

voke this interface to submit a batch of block headers along with their proofs for

storage in zkAggregatorRollup.

• InsertQueryResults (zkQueryNet → zkAggregatorRollup): zkQueryNet

may invoke this interface to submit a batch of queries and corresponding query

results along with their proofs.

• FetchAttestedData (zkQueryNet → zkAggregatorRollup): Via this in-

terface, zkQueryNet can look up block header contents or query results from

zkAggregatorRollup, along with their Verkle tree inclusion proof, which can be

efficiently verified against the rollup state root directly in the Base Chain Rollup

Contract.

6.1.4. Rollup Fee Model

In zkAggregatorRollup, a fee is paid when zkQueryNet sends the FetchAttestedData

request to the rollup. The paid fee is used to cover the prover cost, Rollup →

BaseChain commit gas cost, and sequencer cost. To amortize the cost, the Rollup →

BaseChain zk commit only occurs once the sequencer has accumulated enough

FetchAttestedData requests. Naturally, there will be a timeout to ensure that the

batch waiting time is upper-bounded. In the future, there will be finer-grained fee

models where each user may select the maximum delay and the maximum fee they are

willing to pay.

28

6.1.5. Basic Workflow

The overall workflow of zkAggregatorRollup is as follows:

(1) The sequencer receives a InsertBlockHeaders or InsertQueryResults trans-

action.

(2) The sequencer verifies if the submitted block headers or query results are valid

by checking the enclosed validity proof.

(3) If valid, insert the block headers or query results into the Verkle tree.

(4) The sequencer sends the Verkle tree updates and the block headers/query results

to a rollup prover to generate proof attesting that the Verkle tree is correctly

updated and the validity of the block headers/query results has been verified.

(5) The rollup prover sends back the proof to the sequencer.

(6) As more InsertBlockHeaders or InsertQueryResults transactions are sub-

mitted, the sequencer accumulates more proofs.

(7) The sequencer dispatches the accumulated proofs to a rollup prover for aggrega-

tion as soon as the sequencer receives enough FetchAttestedData transactions

from zkQueryNet.

(8) The rollup prover aggregates the proofs and sends back the aggregate proof to

the sequencer.

(9) The sequencer commits the accumulated Verkle tree root updates to the Base

Chain contract and submits the aggregate proof to prove the validity of these

updates.

In the following two subsections, we describe the detailed protocols for the rollup

sequencer and the rollup prover network.

6.2. Rollup Sequencer

In zkAggregatorRollup, the sequencer verifies the validity proof for the block headers

and query results and maintains Verkle trees for storage of attested block headers

and query results. Initially, the sequencer is a centralized server and will become a

decentralized sequencer network in the future.

Whenever a InsertBlockHeaders or InsertQueryResults transaction is processed

by the sequencer, the Verkle tree is updated and a new rollup block is generated. A

rollup block i is finalized on Base Chain if the Verkle tree root at block number i has

29

been committed to Base Chain rollup contract and the corresponding validity proof

has been verified in the Base Chain rollup contract. Note that a FetchAttestedData

transaction won’t update the Verkle tree state so a new rollup block is not generated

(but the sequencer still needs to take some actions, to be introduced later).

Below we describe in detail how the sequencer handles these transactions.

6.2.1. Insert Block Headers

Let’s assume the latest rollup block number is i. The Verkle tree at block number i is

represented by T b
i with its root denoted by rootbi .

Suppose that the sequencer receives a InsertBlockHeaders transaction from a

zkFabric relayer. The following information should be submitted with the transaction:

• A list of block headers to be stored: B = {Bc
n}c,n each element Bc

n represents the

block header of chain c at block number n.

• Aggregate proof π(B) that attests the correctness of the block headers.

• Hash of the block headers H(B). The hash along with the aggregate proof π(B)

will be later submitted to the rollup prover as part of the public inputs to the

recursive verification circuit; otherwise, the recursive verification circuit will need

to take the full list of block headers B, which increases the verification circuit

size.

Then the workflow for the sequencer to handle the InsertBlockHeaders transaction

is as follows:

(1) The sequencer verifies the validity proof π(B) for the submitted block headers

B.

(2) If valid, it generates a new rollup block i + 1 and updates the Verkle tree by

inserting the verified block headers, i.e., inserts key-value pair (c, n) 7→ H(Bc
n)

for each block Bc
n ∈ B. Note that only the hash values of the block headers are

stored in the Verkle tree leaves; the full block header contents are stored in a

separate KV DB and be accessed via H(Bc
n) 7→ Bc

n.

(3) The sequencer sends the Verkle tree update T b
i → T b

i+1 along with the block

headers B, their hash value H(B) and the validity proof π(B) to one of the

rollup provers to generate a validity proof πi+1 = π
(
π(B), T b

i → T b
i+1

)
attesting

the fact that the validity proof π(B) was correctly verified and that the Verkle

30

tree update T b
i → T b

i+1 was correct. The proof πi+1 is then sent back from

the rollup prover to the sequencer. Note that to speed up the proof generation

process, the proofs for different rollup blocks can be generated in parallel on

different rollup provers.

The new Verkle tree rootbi+1 won’t be immediately committed to Base Chain. In-

stead, the Rollup → BaseChain commit will be triggered by FetchAttestedData

transaction from zkQueryNet, which will be specified in Section 6.2.3.

Protocol 1 formalizes the above flow for inserting new block headers.

Protocol 1 Sequencer: InsertBlockHeaders

Input: A list of block headers B = {Bc
n}c,n

Input: Aggregate proof π(B) that attests the correctness of the block headers
Input: Hash of the block headers H(B)
Input: The latest rollup block number i
1: if Verify(π(B))=True then
2: Increment the rollup number to i+ 1
3: for each block Bc

n ∈ B do
4: Insert key-value pair (c, n) 7→ H(Bc

n) into Verkle tree
5: Insert key-value pair H(Bc

n) 7→ Bc
n to KV DB

6: end for
7: Send Verkle tree update T b

i → T b
i+1, block headers B, hash value H(B) and

proof π(B) to a rollup prover
8: end if

6.2.2. Insert Query Results

The flow for handling the InsertQueryResults transaction is described in Protocol

2, which is similar to InsertBlockHeaders.

6.2.3. Fetch Attested Data

As previously mentioned, when zkQueryNet sends a FetchAttestedData request to

the sequencer, not only the data and its inclusion proof is returned, but also the

Rollup → BaseChain state root commit and finalization may be triggered.

Specifically, assume that the last finalized rollup block number on Base Chain is nf ,

and the latest rollup block number is nr, which means that rollup blocks nf +1, ..., nr

haven’t been committed and finalized on Base Chain. The corresponding rollup proofs

are πnf+1, ..., πnr
and Verkle tree roots are rootnf+1, ..., rootnr

.

To amortize the cost, the sequencer will commit and attest these Verkle tree roots in

31

Protocol 2 Sequencer: InsertQueryResults

Input: A list of queries and corresponding query results QR = {(Qi, Ri)}i where
element represents the i-th query Qi and corresponding result Ri. Each query Qi

is associated with a unique query ID (denoted by Qi · id).
Input: Hash of queries and results H(QR)
Input: Aggregate proof π(QR) that attests the correctness of the query results
Input: The latest rollup block number i
1: if Verify(π(QR))=True then
2: Increment the rollup number to i+ 1
3: for each block (Qi, Ri) ∈ QR do
4: Insert key-value pair Qi · id 7→ H(Qi||Ri) into Verkle tree
5: Insert key-value pair H(Qi||Ri) 7→ (Qi, Ri) to KV DB
6: end for
7: Send Verkle tree update T b

i → T b
i+1, queries/results QR, hash value H(QR)

and proof π(Q) to a rollup prover
8: end if

the Base Chain rollup contract once the number of accumulated FetchAttestedData

requests exceeds M (of course, there will be a timeout to cap the max wait-

ing time for each batch of requests). Suppose the current accumulated number of

FetchAttestedData requests is m (batch counter).

The flow for a FetchAttestedData transaction is as follows (see Protocol 3)

(1) zkQueryNet submits a FetchAttestedData transaction to the sequencer with

some key. For example, key could be chain ID+block number for block header

retrieval or query ID for data query results.

(2) The sequencer look up the value via key 7→ hash(value) 7→ value from the

Verkle tree and the KV DB, and generates inclusion proof for the fetched data.

The sequencer then sends the data value and the inclusion proof to zkQueryNet

for verification on Base Chain.

(3) The sequencer increments the batch counter m → m+ 1.

(4) If the batch counter m ≥ M , the sequencer sends proofs πnf+1
, ..., πnr

to a rollup

prover for aggregation.

(5) After receiving the aggregate proof π̂nf+1→nr
, the sequencer commits the Verkle

tree roots rootnf+1, ..., rootnr
to the Base Chain rollup contract and submit the

attestation proof π̂nf+1→nr
to finalize these state commits.

(6) The sequencer reset the batch counter m = 0.

32

Protocol 3 Sequencer: FetchAttestedData

Input: key (key is chain ID + block number for block header retrieval or query ID
for data query results)

1: Look up the value for the key from the Verkle tree and the KV DB.
2: Generate inclusion proof for the key-value pair
3: Send the key-value pair and the inclusion proof to zkQueryNet
4: Increment the batch counter m → m+ 1
5: if m ≥ M then
6: Send accumulated rollup block proofs πnf+1

, ..., πnr
to a rollup prover for ag-

gregation.
7: After receiving the aggregate proof π̂nf+1→nr

, commit the Verkle tree roots
rootnf+1, ..., rootnr

to the Base Chain rollup contract and submit the attestation
proof π̂nf+1→nr

to finalize these state commits.
8: Reset batch counter m = 0
9: end if

6.3. Rollup Prover Network

The rollup prover network is responsible for generating proofs for rollup blocks. Provers

in the network are expected to utilize accelerators such as GPUs, FPGAs, and ASICs

to reduce the proving time and proving cost.

The sequencer may dispatch a single-rollup-block proof job or a multi-rollup-block

aggregation-proof job to a rollup prover. Multiple rollup provers may generate proofs

in parallel. Figure 6 illustrates how the aggregate proof is generated by rollup provers.

proof for rollup

block i+1

proof for rollup

block i+2

proof for rollup

block i+k

Aggregate Proof

Rollup Prover 1

Recursive

Verification Circuit

Verkle Tree Circuit

Aggregation Circuit

Rollup Prover 2

Recursive

Verification Circuit

Verkle Tree Circuit

Aggregation Circuit

Rollup Prover 3

Recursive

Verification Circuit

Verkle Tree Circuit

Aggregation Circuit

Rollup Prover 4

Recursive

Verification Circuit

Verkle Tree Circuit

Aggregation Circuit

query result proof

query + results +

hash

Verkle tree update

i+k

Ethereum block

header proof

Ethereum block

header + hash

Verkle tree update

i+1

Cosmos block

header proof

Cosmos block

header + hash

Verkle tree update

i+2

......

Figure 6. Proof generation by rollup provers.

33

6.3.1. Single Rollup Block Proof

Each single rollup block proof involves two circuits:

(1) A Verkle tree circuit that proves the correctness of Verkle tree update (in

particular, the correctness of tree update after inserting a key-value pair).

(2) A recursive verification circuit that proves that the proof π(B) of block

headers or the query results proof π(QR) has been correctly verified.

After receiving the rollup block proof assignment from the sequencer, the rollup

prover first generates two proofs using the two circuits. Then it aggregates the two

proofs into one proof and sends it back to the sequencer.

In terms of ZKP design, the recursive verification circuit is of particular interest,

where we embrace a composable architecture and don’t restrict ourselves to one

particular ZKP development framework.

• The “inner” proof π(B) or π(QR) may be generated in heterogeneous sys-

tems (e.g., Plonk, Groth16, STARKs) for performance reasons. For example, our

benchmark results [32] show that SHA-256 proof generation is faster in Groth16

than in Plonk due to its special binary wire values, while other operations such

as elliptic curve pairing and non-native field arithmetics may be faster in Plonk-

ish arithmetization than R1CS due to its flexibility. Thus, different blockchain

consensus mechanisms may be best proved in different proving systems, not to

mention the more heterogeneous query patterns. As a result, the recursive verifi-

cation circuit should be able to verify different proving systems in the circuit. In

fact, such a composable architecture has already been adopted in production ZK

systems such as Polygon zkEVM [19] which compose STARKs with Groth16.

• Moreover, Brevis zkAggregatorRollup commits to multiple Base Chains where

heterogeneous cryptographic primitives are supported. For example, while

Ethereum only supports BN254 pairing as a pre-compile, other blockchains sup-

port efficient pairing over other elliptic curves as pre-compiles or built-ins. This

opens up the space for more efficient recursion such as the 2-chain scheme [37].

• Finally, we are also researching and developing efficient “outer” layer protocols

that enable efficient and interoperable instantiations (e.g., LegoSNARKs [36],

sumcheck [35]).

34

6.3.2. Multi-Rollup-Block Aggregation Proof

In addition, the rollup prover may also be assigned a job for aggregating the multi-

ple rollup block proofs πi, ..., πi+k. Then a single aggregate proof is sent back to the

sequencer and will be later submitted to Base Chain for on-chain verification.

Our current implementation is using the batching technique [18] and will evolve to

more sophisticated aggregation techniques such as aPlonk [34] and Nova [39]

The assignment of proving jobs within the rollup prover network is of independent

interest and won’t be discussed in this paper. We will publish separate papers on the

economy design for the rollup prover network.

7. Use Cases

Brevis empowers developers to create dApps that can access omnichain data across

arbitrary time horizons in a way that was previously impossible. This innovation will

undoubtedly establish a new paradigm, transforming how dApps are developed across

all sectors. In this section, we present several immediate applications, but we anticipate

the community will discover many more use cases.

7.1. ZK Multi-blockchain Interoperability

As discussed in Section 4, nearly all existing interoperability solutions fall into the “ex-

ternal validation model” which necessitates trust in an intermediary entity. Although

on-chain light client solutions are trust-minimized in theory, they are prohibitively

expensive to implement in practice. Brevis addresses this challenge by combining light

client protocol and ZKP, where zkFabric generates ZK Proof of Consensus for all con-

nected blockchains and stores the corresponding block headers in zkAggregatorRollup.

With these zk-attested block headers available, constructing a zkBridge on top of

Brevis is as straightforward as implementing a ZQE with the following Query API:

byte[] get_message(uint256 [] chain_ids ,

uint256 [][] message_ids);

This Query API enables batched delivery of multiple messages from different

blockchains. An off-chain relayer can drive this Query API by monitoring source chain

messages and assisting the destination chain receiver smart contract in calling the

35

Agent Smart Contract with the appropriate message ids and chain ids. Existing

multi-chain dApps, including cross-chain DeFi and asset bridges, can easily adapt to

this ZK interoperability solution without altering their application-layer smart con-

tracts.

7.2. Data-driven DeFi

In addition to the liquidity farming reward auto-adjustment example discussed in Sec-

tion 3, we believe data-driven DeFi will become a broad class of applications leveraging

Brevis, thanks to the scalability and privacy it enables.

With trust-free access to comprehensive historical and omnichain trading flows,

derivatives such as options can now incorporate novel exercise conditions, such as Ex-

ponential Time Weighted Price or Time-Volume Weighted Price. Alternative deriva-

tives tracking user behavior, price trends, protocol or blockchain TVL changes, volatil-

ity, price correlations, and more will also be possible through various implementations

of ZQEs.

On-chain active fund management solutions can generate ZK proofs demonstrat-

ing that position adjustments are based solely on specific algorithmic models derived

from market data, without any unauthorized human intervention. Furthermore, due

to the privacy-preserving property of Brevis, the precise model parameters can remain

concealed to maintain a competitive market advantage.

7.3. User Acquisition with Trust-free Revenue Sharing

The lifecycle of user acquisition in Web 2.0 typically concludes at the point of user

download or registration. At this stage, advertisers pay advertising channels, and their

relationship terminates. This arrangement is suboptimal for both parties: advertisers

pay the same upfront price for all acquired users, without the ability to differentiate

based on their Lifetime Value; advertising channels also cannot share long-term revenue

streams, even when acquiring high-value users. This lose-lose situation arises because,

in the Web 2.0 world, post-acquisition user data falls within the advertiser’s private

domain, making it impossible for advertising channels to access post-acquisition user

statistics in a trust-free way.

Web 3.0 has the potential to fundamentally transform this user acquisition model

36

since most user activity data are in the public domain. However, current Web 3.0 user

acquisition platforms, such as Quest3, still follow the Web 2.0 paradigm because there

is no way to obtain post-acquisition user revenue data directly on-chain and in a trust-

free manner. Brevis revolutionizes this by enabling advertising channels to generate

revenue proofs for all users they acquire. By leveraging Brevis, the user acquisition

landscape in Web 3.0 will undergo a fundamental shift: advertisers will pay only for

high-value users, and advertising channels will be incentivized to match users with

individual advertisers optimally.

7.4. zkDID

With the capability to prove any statistics about users’ historical behaviors, Brevis will

be an essential tool for constructing trust-free zkDID solutions that can be employed

in various use cases.

7.4.1. Prevent Sybil Attacks

Since creating an account on the blockchain incurs practically zero cost, the issue

of Sybil Attacks has plagued the blockchain community from day one. When incen-

tivized user acquisition events or retrospective airdrops occur, it is often challenging

for blockchain projects to differentiate bots from real users. Off-chain solutions fre-

quently entail regulatory and trust issues by creating a centralized token distribution

entity.

By using Brevis, applications can send queries to different ZQEs to generate ZK

proofs of individual or aggregated users’ identities based on hard-to-fake on-chain

behaviors, such as account age, interaction with KYC’ed exchanges, fees paid to rel-

evant protocols or dApps, long-term holding of meaningful assets, and more. Using

anti-Sybil solutions built with Brevis, dApp developers can prevent Sybil Attacks in

airdrop campaigns or beta rollouts to exclusive early contributors while operating in

a fully trust-free manner.

7.4.2. User Life Cycle Management

While accessing external data for a dApp can help prevent Sybil Attacks, a dApp’s

internal data can be crucial for building a trust-free user life cycle management pro-

cess. For example, a loyalty system can be constructed for new users who passed the

37

initial Sybil Attack firewall based on their day-to-day usage and behavior within the

application.

Consider a DEX, for instance; one can build a VIP trader program to reduce fees

for professional traders based on volume. A qualifying trader can send a query via

Brevis to generate corresponding zkDID proof, demonstrating that she has traded

a volume exceeding a VIP tier threshold during an accounting period. In another

example, blockchain gaming LiveOps campaigns can be designed based on arbitrary

user behaviors such as 7-day retention, gameplay frequency, session time, winning

ratio, and various other in-game metrics.

One might argue that such internal data accounting and analysis logic can be built

into the dApp itself without relying on Brevis. While this is true, solutions built with

Brevis offer several key advantages:

• Low-cost: Incorporating in-app accounting incurs additional on-chain costs for

every transaction and all users. This cost is significantly higher compared to the

as-needed proof generation for only a relatively small number of users match-

ing specific criteria. It is important to note that proof generation and on-chain

verification can actually be batched across many users to further amortize the

costs.

• Future-proof : Smart contracts are generally immutable unless altered through

governance processes. However, user life cycle management often requires diverse

campaigns targeting different users based on current circumstances. Adding data

accounting directly within a dApp will not be able to address dynamically chang-

ing requirements. However, Brevis-powered zkDID solutions can flexibly change

user targeting of various campaigns without modifying any on-chain smart con-

tract, making them much more future-proof.

• Portable: Tracking statistics with in-dApp accounting means that data are

still isolated within walled gardens, and there is no simple way for users to

reuse these already proven identities. However, zkDIDs generated via Brevis are

publicly stored in zkAggregatorRollup and are therefore portable to different

applications.

38

7.5. Account Abstraction

Another compelling use case for Brevis lies in the realm of Account Abstraction (AA).

The principle of account abstraction involves using a smart contract as an “abstrac-

tion” layer for users to access blockchain applications. Compared to employing a bare-

metal crypto wallet, AA often provides enhanced security and usability.

One frequently discussed usability benefit of AA is social recovery, wherein access

to the wallet can be regained even when the main controlling key is lost. Current

social recovery designs rely on a static set of predefined multi-signatures. However,

this set of multiple signatures must be carefully maintained and updated to ensure

recoverability in the event of a lost key. By using Brevis, a smart wallet can implement

social recovery capability based on recent social and financial transaction connections.

Instead of relying on a fixed set of external wallets, the social recovery function

can query Brevis to trust-freely obtain the top five financial counterparties with the

highest outgoing transaction value during a specific period or the top three KYC’d

exchange accounts to which the account deposited funds in the last year, and use those

as sources for social recovery. With thoughtful design, this approach will significantly

reduce maintenance overhead and further lower the barrier of entry for new users in

the blockchain ecosystem.

Numerous other use cases exist in all the aforementioned directions, and the appli-

cable scenarios in other areas such as social and NFT gaming are equally thrilling. We

encourage community developers to explore and discover more exciting use cases.

8. Conclusion

In this white paper, we propose Brevis, a ZK omnichain data attestation platform that

empowers dApps to access, compute, and utilize arbitrary data across the entire history

of multiple blockchains by leveraging Zero-Knowledge (ZK) succinct proofs. Brevis’s

architecture consists of three main components: zkFabric, zkQueryNet, and zkAggre-

gatorRollup. Together, these components provide a trust-free, omnichain, modularized,

and low-cost solution for data access and computation. The economic incentive design

of Brevis is not covered in this white paper and will be discussed in future works.

39

References

[1] Axelar, https://axelar.network.

[2] Celer cbridge, https://celer.network.

[3] Chainlink, https://chain.link.

[4] Circom, https://docs.circom.io.

[5] Clique proof-of-authority consensus protocol, https://eips.ethereum.org/EIPS/eip-225.

[6] Consensys gnark, https://docs.gnark.consensys.net.

[7] Consensys zkevm, https://consensys.net/zkevm.

[8] Cosmos iavl+ tree, https://github.com/cosmos/iavl.

[9] Cosmos ibc, https://ibc.cosmos.network.

[10] Dune analytics, https://dune.com/browse/dashboards.

[11] The graph, https://thegraph.com.

[12] Halo2, https://zcash.github.io/halo2.

[13] Ics-23: Vector commitments, https://github.com/cosmos/ics23.

[14] Merkle patricia trie, https://ethereum.org/en/developers/docs/data-structures-and-

encoding/patricia-merkle-trie.

[15] Multichain, https://multichain.xyz.

[16] Near rainbow bridge, https://near.org/bridge.

[17] Nomad bridge, https://app.nomad.xyz.

[18] Plonk aggregation circuit, https://github.com/matter-labs/recursiveaggregationcircuit.

[19] Polygon zkevm, https://docs.hermez.io/zkEVM/zkProver/Overview/zkProver-Overview.

[20] Risc zero, https://www.risczero.com.

[21] Ronin bridge, https://bridge.roninchain.com.

[22] Scroll zkevm.

[23] Starkware, https://starkware.co.

[24] Succinct labs proof of consensus, https://blog.succinct.xyz/post/2022/10/29/gnosis-

bridge.

[25] Tendermint light client in solidity, https://github.com/ChorusOne/tendermint-sol.

[26] Thorchain, https://thorchain.org.

[27] Verkle tree, https://vitalik.ca/general/2021/06/18/verkle.html.

[28] Wormhole, https://wormhole.com.

[29] zkllvm, https://github.com/NilFoundation/zkllvm.

[30] zksync, https://zksync.io.

[31] zkwasm, https://github.com/DelphinusLab/zkWasm.

[32] Sha256 proof benchmarks: https://blog.celer.network/2023/03/01/the-pantheon-of-zero-

40

knowledge-proof-development-frameworks (2023).

[33] R. Akeela and W. Chen, Yafa-108/146: Implementing ed25519-embedding cocks-pinch

curves in arkworks-rs, Cryptology ePrint Archive (2022).

[34] M. Ambrona, M. Beunardeau, A.L. Schmitt, and R.R. Toledo, aplonk: Aggregated plonk

from multi-polynomial commitment schemes, Cryptology ePrint Archive (2022).

[35] J. Bootle, A. Chiesa, and K. Sotiraki, Sumcheck arguments and their applications, in Ad-

vances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference,

CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part I 41. Springer,

2021, pp. 742–773.

[36] M. Campanelli, D. Fiore, and A. Querol, Legosnark: Modular design and composition of

succinct zero-knowledge proofs, in Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security. 2019, pp. 2075–2092.

[37] Y. El Housni and A. Guillevic, Families of SNARK-friendly 2-chains of elliptic curves,

in Advances in Cryptology–EUROCRYPT 2022: 41st Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May

30–June 3, 2022, Proceedings, Part II. Springer, 2022, pp. 367–396.

[38] F. Haider, Compact sparse merkle trees, Cryptology ePrint Archive (2018).

[39] A. Kothapalli, S. Setty, and I. Tzialla, Nova: Recursive zero-knowledge arguments from

folding schemes, in Advances in Cryptology–CRYPTO 2022: 42nd Annual International

Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022,

Proceedings, Part IV. Springer, 2022, pp. 359–388.

41

